DEVELOPMENT OF MULTI-HAZARD RISK INDICATORS FOR IMMOVABLE CULTURAL HERITAGE

Flood Vulnerability Assessment

Ph.D. Student: Luis Gerardo Flores Salazar University of Porto Faculty of Engineering

U. PORTO

Advisors: Xavier das Neves Romão Rui Figueiredo

※ 🔿

ANALYSIS AND MITIGATION OF RISKS IN INFRASTRUCTURES | INFRARISK-

Content

- Methods for the flood vulnerability assessment of cultural heritage **are scarce and/or have significant limitations**.
- A new method combining state-of-the-art knowledge on the topic can support better decision-making for **prioritization and mitigation of vulnerabilities.**
- Among existing conceptual approaches, indicator-based and vulnerability curve methods appear to be an adequate option, particularly for flood risk assessments at a large scale.
- To develop a **new indicator-based flood vulnerability assessment, a comprehensive literature review was conducted by analysing semi-quantitative methods** focused on cultural heritage assets.
- Based on this, it was decided that the methodology should be based on an intermediate level of modelling detail, between large-scale and asset-specific approaches, which are the most commonly available. In this way, a research gap is addressed.

- Methods for the flood vulnerability assessment of cultural heritage **are scarce and/or have significant limitations**.
- A new method combining state-of-the-art knowledge on the topic can support better decision-making for **prioritization and mitigation of vulnerabilities.**
- Among existing conceptual approaches, **indicator-based and vulnerability curve methods appear to be an adequate option, particularly for flood risk assessments at a large scale.**
- To develop a **new indicator-based flood vulnerability assessment, a comprehensive literature review was conducted by analysing semi-quantitative methods** focused on cultural heritage assets.
- Based on this, it was decided that the methodology should be based on an intermediate level of modelling detail, between large-scale and asset-specific approaches, which are the most commonly available. In this way, a research gap is addressed.

- Methods for the flood vulnerability assessment of cultural heritage **are scarce and/or have significant limitations**.
- A new method combining state-of-the-art knowledge on the topic can support better decision-making for **prioritization and mitigation of vulnerabilities.**
- Among existing conceptual approaches, indicator-based and vulnerability curve methods appear to be an adequate option, particularly for flood risk assessments at a large scale.
- To develop a **new indicator-based flood vulnerability assessment, a comprehensive literature review was conducted by analysing semi-quantitative methods** focused on cultural heritage assets.
- Based on this, it was decided that the methodology should be based on an intermediate level of modelling detail, between large-scale and asset-specific approaches, which are the most commonly available. In this way, a research gap is addressed.

- Methods for the flood vulnerability assessment of cultural heritage **are scarce and/or have significant limitations**.
- A new method combining state-of-the-art knowledge on the topic can support better decision-making for **prioritization and mitigation of vulnerabilities.**
- Among existing conceptual approaches, indicator-based and vulnerability curve methods appear to be an adequate option, particularly for flood risk assessments at a large scale.
- To develop a **new indicator-based flood vulnerability assessment, a comprehensive literature review was conducted by analysing semi-quantitative methods** focused on cultural heritage assets.
- Based on this, it was decided that the methodology should be based on an intermediate level of modelling detail, between large-scale and asset-specific approaches, which are the most commonly available. In this way, a research gap is addressed.

- Methods for the flood vulnerability assessment of cultural heritage **are scarce and/or have significant limitations**.
- A new method combining state-of-the-art knowledge on the topic can support better decision-making for **prioritization and mitigation of vulnerabilities.**
- Among existing conceptual approaches, **indicator-based and vulnerability curve me to be an adequate option, particularly for flood risk assessments at a large scale.**
- To develop a **new indicator-based flood vulnerability assessment, a comprehens review was conducted by analysing semi-quantitative methods** focused on cultural he
- Based on this, it was decided that the methodology should be based on an intermediate level of modelling detail, between large-scale and asset-specific approaches, which are the most commonly available. In this way, a research gap is addressed.

What are the indicator-based methods in vulnerability assessments?

Methods that include factors, called 'indicators' that will be classified within a range of values to determine a **proxy of the qualitative characteristics that** support the assessment of potential damage through a vulnerability index.

What are the indicators-based methods in vulnerability assessments? A method that include factors, called 'indicators' that will be classified within a range of values

to determine a **proxy of the qualitative characteristics that supports the possible expected damage** through a vulnerability index.

Advantages

They are feasible options to define complex features into representative measurable attributes or qualities of the original characteristic to estimate the vulnerability in a relative and simplified way, which can provide assistance for decision-making in disaster risk reduction.

What are the indicators-based methods in vulnerability assessments?

A method that include factors, called 'indicators' that will be classified within a range of values to determine a **proxy of the qualitative characteristics that supports the possible expected damage** through a vulnerability index.

Advantages

They are feasible options to define complex features into representative measurable attributes or qualities of the original characteristic to estimate the vulnerability in a relative and simplified way, which can provide assistance for decision-making in disaster risk reduction.

Disadvantages

Aiming for simplicity, they are typically only focused on the characteristics of the exposed elements and **do not take into account the intensity of the natural hazards**, which are crucial for assessing vulnerability and risk.

Conceptual idea for an innovative, intermediate-level methodology

Vulnerability curves

Indicators-based method / Vulnerability Index

100	Hgh
50	Moderate
0	Low

Conceptual idea for an innovative, intermediate-level methodology

Vulnerability curves

Indicators-based method / Vulnerability Index

100	Hgh
50	Moderate
0	Low

Hybrid Flood Vulnerability Assessment for Historic Buildings and their valuable content

Goal: to characterise the vulnerability of large sets of cultural heritage assets in a simplified manner, with a reasonably high level of detail, taking into consideration the intensity of the hazard, in this case, water depth (β)

Review of Methods for the selection of Flood Vulnerability Indicators

Hybrid Flood Vulnerability Assessment for Historic Buildings and their valuable content

Baseline Vulnerability Curve

Case no. 1, $GL \neq 0$ (\therefore above ground level), $h_b = h_{Lb_a}$, h_b and $h_{Lb} > Z_{b_a}$, $h_0 = h_{L0}$

14 baseline vulnerability curves cases were defined considering the geometric properties of historic constructions

Baseline Vulnerability Curve (+13 more cases defined cases)

 C_M -Properties of the built materials and its valuable content

 $W_{M} = 0.30$

 C_{AE} — Architectural envelope W_{AE} =0.30

 C_{FP} — Flood emergency plan W_{FP} =0.20

 C_{IS} — Immediate surroundings W_{IS} =0.20

 I_{FL1} . Vertical Support Materials I_{FL2} . Material of Inter-storeys (β) I_{FL3} . Finishings and Linings I_{FL4} . Movable heritage content I_{FL5} . Attached artwork I_{FL6} . Openings (β) I_{FL7} . Conservation State I_{FL8} . Vertical structure envelope (β) I_{FL9} . Roof I_{FL10} . Foundation and soil I_{FL11} . Flood preparedness plan I_{FL12} . Drainage system I_{FL13} . Drying systems I_{FL14} . Utilities and appliances (β) I_{FL15} . Vegetation I_{FL16} . Inclination and type of ground surface I_{FL17} . Permeability of the surface I_{FL18} . Closeness to a slope

 \overline{C}_i = mean value of considering the I_{FLi} for each category

 W_i = attributed weight of each category

Note: (β) means that the indicator consider possible water depth measurements

(Illustrative example no.1 for I_{FL1})

Indicators associated with the material of the historic construction

For instance a vertical support (I_{FL1}) of:

- 1. three-leaves walls of two leaves of sandstone (*SI*=25)
- 2. and single-leaf of earth (SI=75)
- 3. using lime mortar joints (SI=25),
- 4. with a coating of lime mortar (SI=25)
- 5. and organic painting (SI=75).

100

$$I_{FL1} = \frac{\sum_{i=1}^{n} SI_i}{n}$$

$$T_{FL1} = \frac{25 + 25 + 75 + 25 + 75}{5} = 45$$

Extensive damage is expected in the short term. Affected components will likely not be recoverable.

recoverable.

How a indicator-based method works?

(Illustrative example no.2 for I_{FL6} (β)

Susceptibility		Percentage area of openings with respect to the worst-case façade.			Any type of permanent prot fully watertight seal, catche	The hypothetical water depth reaches the bottom of the window		
	muex	<25%	25-50%	>50%	YES	NO	YES	NO
	0							Х
	25				X			
	50	Х				Х	Х	
	75		Х			Х	Х	
	100			X		Х	Х	
		,	`					

Multi-Attribute Scoring Criteria

Flood Vulnerability Indicators	SI (Susceptibility Indices)					W	
I_{FL1} . Vertical Support Materials	Mean values	from	minimum	0	to	maximum 100	
I_{FL2} . Material of Inter-storeys (β)	Mean values	from	minimum	0	to	maximum 100	
I _{FL3} . Finishings and Linings	Mean values	from	minimum	0	to	maximum 100	
I_{FL4} . Movable heritage content	Mean values	from	minimum	0	to	maximum 100	0.3
<i>I_{FL5}</i> . Attached artwork	Mean values	from	minimum	0	to	maximum 100	
I_{FL6} . Openings (β)	0	25		50		75 100	
<i>I_{FL7}</i> . Conservation State	0	25		50		75 100	
I_{FL8} . Vertical structure envelope (β)	0					100	
I _{FL9} . Roof	0	20	40		60	80 100	0.3
I_{FL10} . Foundation and soil	0		35		70	100	
<i>I_{FL11}</i> . Flood preparedness plan	0			50		100	
<i>I_{FL12}</i> . Drainage system	0		35		70	100	0.2
<i>I_{FL13}</i> . Drying systems	0					100	0.2
I_{FL14} . Utilities and appliances (β)	0		35		70	100	
<i>I_{FL15}</i> . Vegetation	0		50			100	
I_{FL16} . Inclination and type of ground surface	0		50			100	0.2
I_{FL17} . Permeability of the surface	0	15	30	45	60	75 100	0.2
I_{FL18} . Closeness to a slope	0					100	
							1

Baseline Vulnerability Curve

Parameters considered to model the curve						
GL	0.2 m					
h_b	0 (no basement)					
h_{Lb}	0 (no basement)					
h_0	9.6 m					
h_{L0}	9.6 m					
	0 (no basement)					
Α	Not applicable					
h_{tw}	3 m					
$h_{tw} + GL$	3.2 m					
VR _{UG}	0					
VR _{G0}	100					
VR _{tw}	80					

Baseline Vulnerability Curve

Parameters conside	Parameters considered to model the curve					
GL	0.2 m					
h_b	0 (no basement)					
h_{Lb}	0 (no basement)					
h_0	9.6 m					
h_{L0}	9.6 m					
Z_b	0 (no basement)					
Α	Not applicable					
h_{tw}	3 m					
$h_{tw} + GL$	3.2 m					
VR _{UG}	0					
VR _{G0}	100					
VR _{tw}	80					

 $GL \neq 0 (:: above ground level)$ $h_b = h_{Lb} = 0$ $h_0 = 0$ $h_0 = h_{L0}$

Baseline Vulnerability Curve

Parameters conside	Parameters considered to model the curve						
GL	0.2 m						
h_b	0 (no basement)						
h_{Lb}	0 (no basement)						
h_0	9.6 m						
h_{L0}	9.6 m						
Z_b	0 (no basement)						
Α	Not applicable						
h_{tw}	3 m						
$h_{tw} + GL$	3.2 m						
VR _{UG}	0						
VR _{G0}	100						
VR _{tw}	80						

 $GL \neq 0 (:: above ground level)$ $h_b = h_{Lb} = 0$ $h_0 = 0$ $h_0 = h_{L0}$

Flood Vulnerability Index (e.g. of three different water depths - β)

	Susceptibility Indices (SI) at different water depths (β) in m.				$(\frac{\sum SI_i}{n})^*W_i$		
Indicator	β=0.23	β=0.73	β=1.43	β=0.23	β=0.73	β=1.43	
I _{FL1} – Vertical support materials	25	25	25				
$I_{FL2}(\beta)$ –Material of inter-storey floors (4.5)*	0	0	0				
I _{FL3} – Finishings and linings	43.75	43.75	43.75				
I _{FL4} – Movable heritage content	66.67	66.67	66.67	9.29	9.29	13.57	
I _{FL5} – Attached artwork	31.25	31.25	31.25	9.29 			
$I_{FL6}(\beta)$ – Openings (1.1)*	0	0	100				
I _{FL7} – Conservation state	50	50	50				
$I_{FL8}(\beta)$ – Vertical structure envelope(0.61)*	0	100	100				
I _{FL9} – Roof	0	0	0	0.00	10.00	10.00	
I _{FL10} – Foundation and soil	0	0	0				
I _{FL11} – Flood preparedness plan	70	70	70	_			
I _{FL12} – Drainage system	100	100	100	12 50	19 50	19 50	
I _{FL13} – Drying systems	100	100	100	15.50	18.30	18.30	
$I_{FL14}(\beta)$ – Utilities and appliances(0.7)*	0	100	100				
I _{FL15} – Vegetation	100	100	100				
I _{FL16} – Inclination and type of ground surface	50	50	50	-	0.00	0.00	
I _{FL17} – Permeability of the surface	30	30	30	9.00	9.00	9.00	
I _{FL18} - Closeness to a slope	0	0	0	- 			
TOTAL (VI _{FL})				31.79	46.79	51.07	

*These indicators considers the water depth (β) for the flood vulnerability assessment. The value of β considered in this evaluation that follows the instructions of Section 4 and may influence the damage impact is referred in "()", in metres.

Flood Vulnerability Index (e.g. of three different water depths - β)

	Susceptibilit	Susceptibility Indices (SI) at different water depths (β) in m.			$(\frac{\sum SI_i}{n})^*W_i$				
Indicator	β=0.23	β=0.73	β=1.43	β=0.23	β=0.73	β=1.43			
I _{FL1} – Vertical support materials	25	25	25						
$I_{FL2}(\beta)$ –Material of inter-storey floors (4.5)*	0	0	0						
I _{FL3} – Finishings and linings	43.75	43.75	43.75						
I _{FL4} – Movable heritage content	66.67	66.67	66.67	9.29	9.29	13.57			
FL5 – Attached artwork	31.25	31.25	31.25						
$F_{\rm FL6}(\beta)$ – Openings (1.1)*	0	\cap	100			-			
FL7 – Conservation state	Based on	Based on hazard maps developed in the scope of the							
_{FL8} (β) – Vertical structure envelope(0.61)*	Portuguese in	nnlamantati	on of the Fur	- oneen Flor	de Directive				
FL9 – Roof	I of tuguese in	ipicinentati	on of the Lui	opcan 110	Jus Directive	10.00			
_{FL10} – Foundation and soil	0	0	0						
FL11 – Flood preparedness plan	70	70	70						
_{FL12} – Drainage system	100	100	100	12 50	10.50	10 50			
FL13 – Drying systems	100	100	100	13.30	18.50	18.50			
$_{FL14}(\beta)$ – Utilities and appliances(0.7)*	0	100	100						
FL15 – Vegetation	100	100	100						
FL16 – Inclination and type of ground surface	50	50	50	9.00	0.00	0.00			
FL17– Permeability of the surface	30	30	30		9.00	9.00			
FL18- Closeness to a slope	0	0	0						
TOTAL (VI _{FI})				31.79	46.79	51.07			

*These indicators considers the water depth (β) for the flood vulnerability assessment. The value of β considered in this evaluation that follows the instructions of Section 4 and may influence the damage impact is referred in "()", in metres.

Flood Vulnerability Index (e.g. of three different water depths - β)

	Susceptibilit	Susceptibility Indices (SI) at different water depths (β) in m.				$(\frac{\sum SI_i}{n})*W_i$		
Indicator	β=0.23	β=0.73	β=1.43	β=0.23	β=0.73	β=1.43		
I _{FL1} – Vertical support materials	25	25	25					
$I_{FL2}(\beta)$ –Material of inter-storey floors (4.5)*	0	0	0	-				
$_{FL3}$ – Finishings and finings $_{FL4}$ – Movable heritage content	Indica	Indicators that have an influence in the vulnerability						
$F_{I6}(\boldsymbol{\beta}) - \text{Openings} (1.1)*$	assessme	nt througho	ut the linea	r distributio	on of the cur	ve.		
rea – Conservation state	50	50	50	-				
$F_{L8}(\beta)$ – Vertical structure envelope (0.61)*	0	100	100					
FL9 - K001	0	0	0	0.00	10.00	10.00		
rL10 – Foundation and soil	0	0	0	-				
_{L11} – Flood preparedness plan	70	70	70		18.50	18.50		
v _{L12} – Drainage system	100	100	100	10.50				
Drying systems	100	100	100	13.50				
$F_{L14}(\beta)$ – Utilities and appliances (0.7)*	0	100	100	-				
T15 – Vegetation	100	100	100					
$_{\rm II.16}$ – Inclination and type of ground surface	50	50	50	-		0.00		
_{1.17} – Permeability of the surface	30	30	30	- 9.00	9.00	9.00		
TL18 – Closeness to a slope	0	0	0	-				
OTAL (VI _{FI})				31.79	46.79	51.07		

*These indicators considers the water depth (β) for the flood vulnerability assessment. The value of β considered in this evaluation that follows the instructions of Section 4 and may influence the damage impact is referred in "()", in metres.

Flood Vulnerability Index (e.g. of three different water depths - β)

	Susceptibility	Susceptibility Indices (SI) at different water depths (β) in m.			$(\frac{\sum SI_i}{n}) * W_i$		
Indicator	β=0.23	β=0.73	β=1.43	β=0.23	β=0.73	β=1.43	
I _{FL1} – Vertical support materials	25	25	25				
$I_{FL2}(\beta)$ –Material of inter-storey floors (4.5)*	0	0	0				
I _{FL3} – Finishings and linings	43.75	43.75	43.75				
I _{FL4} – Movable heritage content	66.67	66.67	66.67	9.29	9.29	13.57	
I _{FL5} – Attached artwork	31.25	31.25	31.25				
$I_{FL6}(\beta) - Openings (1.1)^*$	0	0	100				
	50	50	50				
Susceptibility Index outcomes for	0	100	100	0.00	10.00		
each flood vulnerability indicator	0	0	0			10.00	
at according to the height director don the	0	0	0				
at associated neights/water depths	70	70	70				
I _{FL12} – Drainage system	100	100	100	13 50	18 50	18 50	
I _{FL13} – Drying systems	100	100	100	15.50	10.30	10.30	
$I_{FL14}(\beta) - Utilities and appliances(0.7)*$	0	100	100				
I _{FL15} – Vegetation	100	100	100				
I _{FL16} – Inclination and type of ground surface	50	50	50	0.00	0.00	0.00	
I _{FL17} – Permeability of the surface	30	30	30	9.00	9.00	9.00	
I _{FL18} - Closeness to a slope	0	0	0				
TOTAL (VI _{FL})				31.79	46.79	51.07	

*These indicators considers the water depth (β) for the flood vulnerability assessment. The value of β considered in this evaluation that follows the instructions of Section 4 and may influence the damage impact is referred in "()", in metres.

Flood Vulnerability Index (e.g. of three different water depths - β)

	Susceptibilit	y Indices (SI) at di depths (β) in m.	fferent water		$(\frac{\sum SI_i}{n})^*W_i$	
Indicator	β=0.23	β=0.73	β=1.43	β=0.23	β=0.73	β=1.43
I _{FL1} – Vertical support materials	25	25	25			
$I_{FL2}(\beta)$ –Material of inter-storey floors (4.5)*	0	0	0			
I _{FL3} – Finishings and linings	43.75	43.75	43.75			
I _{FL4} – Movable heritage content	66.67	66.67	66.67	9.29	9.29	13.57
I _{FL5} – Attached artwork	31.25	31.25	31.25	- 9.29		
$I_{FL6}(\beta)$ – Openings (1.1)*	0	0	100			
I _{FL7} – Conservation state	50	50	50			
$I_{FL8}(\beta)$ – Vertical structure envelope(0.61)*	Final weights for e	ach category	100	,		
I _{FL9} – Roof	0		0	0.00	10.00	10.00
I _{FL10} – Foundation and soil	0	0	0			
I _{FL11} – Flood preparedness plan	70	70	70			
I _{FL12} – Drainage system	100	100	100	13 50	18 50	18 50
I _{FL13} – Drying systems	100	100	100	15.50	18.30	18.30
$I_{FL14}(\beta) - Utilities and appliances(0.7)*$	0	100	100			
I _{FL15} – Vegetation	100	100	100			
I _{FL16} – Inclination and type of ground surface	50	50	50	0.00	0.00	0.00
I _{FL17} – Permeability of the surface	30	30	30	9.00	9.00	9.00
I _{FL18} - Closeness to a slope	0	0	0			
TOTAL (VI _{FL})				31.79	46.79	51.07

*These indicators considers the water depth (β) for the flood vulnerability assessment. The value of β considered in this evaluation that follows the instructions of Section 4 and may influence the damage impact is referred in "()", in metres.

Flood Vulnerability Index (e.g. of three different water depths - β)

	Susceptibility Indices (SI) at different water depths (β) in m.			$(\frac{\sum SI_i}{n}) * W_i$		
Indicator	β=0.23	β=0.73	β=1.43	β=0.23	β=0.73	β=1.43
I _{FL1} – Vertical support materials	25	25	25		1	
$I_{FL2}(\beta)$ –Material of inter-storey floors (4.5)*	0	0	0			
I _{FL3} – Finishings and linings	43.75	43.75	43.75			
I _{FL4} – Movable heritage content	66.67	66.67	66.67	9.29	9.29	13.57
I _{FL5} – Attached artwork	31.25	31.25	31.25	_		
$I_{FL6}(\beta)$ – Openings (1.1)*	0	0	100	/		
I _{FL7} – Conservation state	50	50	50			
$I_{FL8}(\beta)$ – Vertical structure envelope(0.61)*	0	100	100			
I _{FL9} – Roof	0	0	0	0.00	10.00	10.00
I _{FL10} – Foundation and soil	0	0	0			
I _{FL11} – Flood preparedness plan	70	70	70	/		
I _{FL12} – Drainage system	100	100	100	12.50	10.50	10.50
I _{FL13} – Drying systems	100	100	100	15.30	18.30	18.30
$I_{FL14}(\beta)$ – Utilities and appliances(0.7)*	0	100	10	-		
I _{FL15} – Vegetation	Final Flood Vulnerability Index(VI _{FL}) at different height/water depth			9.00	9.00	
I _{FL16} – Inclination and type of ground surface						9.00
I _{FL17} – Permeability of the surface						
I _{FL18} - Closeness to a slope	0	0	0			
TOTAL (VI _{FL})			31.79	46.79	51.07	
*These indicators considers the water depth	(β) for the flood vulnerability asses	sment. The value of β	considered in this	evaluation that fo	bliows the instruction	ons of Section 4
and may influence the damage impact is refe	rred in "O", in metres.	1				

Combined Flood Vulnerability Curve – Hybrid Method

Combined Flood Vulnerability Curve – Hybrid Method

$$FVC(\beta)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{VI_{FL}}{100}\right)_{[0:1]}$$

=

 $FVC(\beta < 0.61)_{[0:100]}$

$$W_C(\beta)_{[0:100]} \times \left(\frac{31.79}{100}\right)_{[0:1]}$$

Combined Flood Vulnerability Curve – Hybrid Method

F

$$FVC(\beta)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{VI_{FL}}{100}\right)_{[0:1]}$$

$$FVC(\beta < 0.61)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{31.79}{100}\right)_{[0:1]}$$

$$FVC(0.61 \le \beta < 0.70)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{41.79}{100}\right)_{[0:1]}$$

Combined Flood Vulnerability Curve – Hybrid Method

$$FVC(\beta)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{VI_{FL}}{100}\right)_{[0:1]}$$

$$FVC(\beta < 0.61)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{31.79}{100}\right)_{[0:1]}$$

$$FVC(0.61 \le \beta < 0.70)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{41.79}{100}\right)_{[0:1]}$$

$$FVC(0.70 \le \beta < 1.10)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{46.79}{100}\right)_{[0:1]}$$

Combined Flood Vulnerability Curve – Hybrid Method

$$FVC(\beta)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{VI_{FL}}{100}\right)_{[0:1]}$$

$$FVC(\beta < 0.61)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{31.79}{100}\right)_{[0:1]}$$

$$FVC(0.61 \le \beta < 0.70)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{41.79}{100}\right)_{[0:1]}$$

$$FVC(0.70 \le \beta < 1.10)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{46.79}{100}\right)_{[0:1]}$$

$$FVC(1.1 \le \beta < 4.5)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{51.07}{100}\right)_{[0:1]}$$

Combined Flood Vulnerability Curve – Hybrid Method

$$FVC(\beta)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{VI_{FL}}{100}\right)_{[0:1]}$$

$$FVC(\beta < 0.61)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{31.79}{100}\right)_{[0:1]}$$

$$FVC(0.61 \le \beta < 0.70)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{41.79}{100}\right)_{[0:1]}$$

$$FVC(0.70 \le \beta < 1.10)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{46.79}{100}\right)_{[0:1]}$$

$$FVC(1.1 \le \beta < 4.5)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{51.07}{100}\right)_{[0:1]}$$

$$FVC(\beta \ge 4.5)_{[0:100]} = V_C(\beta)_{[0:100]} \times \left(\frac{52.68}{100}\right)_{[0:1]}$$

Combined Vulnerability Curve – Hybrid Method

Ongoing Work- Development of Seismic Vulnerability Assessment in Cultural Heritage

Conference papers (21/22)

- F. Salazar, L. G., Romão, X., Paupério, E. Survey of Vulnerability Indicators for Fire Risk Assessment in Cultural Heritage. 2nd International Conference on Urban Risks ICUR 2022, Lisbon, Portugal.
- F. Salazar, L. G., Figueiredo, R., Romão, X. Survey of Vulnerability Indicators for Flood Risk Assessment in Cultural Heritage. 2nd International Conference on Urban Risks ICUR 2022, Lisbon, Portugal.
- F. Salazar, L. G., Romão, X., Paupério, E. Development of a Fire Damage Index for Immovable Cultural Heritage. 12th International Conference on Structural Analysis of Historical Constructions SAHC 2021, Barcelona, Spain. DOI: 10.23967/sahc.2021.077
- Tikhonova, O., Romão, X., & Salazar, G. The use of GIS tools for data collection and processing in the context of fire risk assessment in urban cultural heritage. International Conference of Young Professionals «GeoTerrace-2021» (Vol. 2021, No. 1, pp. 1-5). European Association of Geoscientists & Engineers, Lviv, Ukraine. https://doi.org/10.3997/2214-4609.20215K3048

Ongoing Research Articles (22/23)

- Fire Damage Index for Vulnerability Assessment in Cultural Heritage
- Performance of Fire Vulnerability Assessment Method in Historic Centre of Guimarães
- Review of Vulnerability Indicators for Flood Risk Assessment in Cultural Heritage
- Hybrid Flood Vulnerability Assessment for Historic Buildings and their valuable content

Future Tasks (22/23)

- Development of a Simplified Seismic Vulnerability Assessment in Cultural Heritage using different data sources (e.g. Remote Sensing)
- Brief discussion of multi-risk/multi-hazard/multi-vulnerability assessment in cultural heritage

THANK YOU FOR YOUR ATTENTION

Ph.D. Student: Luis Gerardo Flores Salazar University of Porto Faculty of Engineering

E-mail: gsalazar@fe.up.pt

Advisors: Xavier das Neves Romão Rui Figueiredo

